Acta Crystallographica Section E

Structure Reports

 OnlineISSN 1600-5368

John Nicolson Low, ${ }^{\text {a* }}$ Justo Cobo, ${ }^{\text {b }}$ Manuel Nogueras, ${ }^{\text {b }}$ Alix Elena Loaiza ${ }^{\text {c }}$ and Luz Marina Jaramillo-Gómez ${ }^{\text {c }}$

${ }^{\text {a }}$ Department of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB24 3UE, Scotland., bepartamento de Química Inorgánica y Orgánica, Universidad de Jaén, 23071 Jaén, Spain, and ${ }^{\text {c }}$ Departamento de Química, Universidad del Valle, AA 25360 Cali, Colombia

Correspondence e-mail: che562@abdn.ac.uk

Key indicators

Single-crystal X-ray study
$T=120 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.055$
$w R$ factor $=0.108$
Data-to-parameter ratio $=19.3$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0] Printed in Great Britain - all rights reserved

Methyl 2-benzyl-1-benzyloxy-6a-methyl-1,2,3,3a,4,6a-hexahydrocyclopenta[b]pyrrole-3a-carboxylate: hydrogen-bonded $\boldsymbol{R}_{4}^{\mathbf{4}}(24)$ sheets

In the title crystal structure, $\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{NO}_{3}$, molecules are linked by two $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds into $R_{4}^{4}(24)$ sheets.

Received 30 November 2005 Accepted 6 December 2005 Online 10 December 2005

Comment

Pyrrolidine-containing derivatives are present in a large number of biologically active natural products and numerous therapeutic agents. Radical cyclizations have emerged as a useful synthetic tool and have been reported in the synthesis of alkaloids and related pyrrolidinic compounds via the generation and trapping of nitrogen-centred radicals e.g. aminyl, iminyl, amidyl radicals etc. (Esker \& Newcomb, 1993; Fallis \& Brinza, 1997; Bowman et al. 1996; Guindon et al., 2001) However, no reports about the capture of neutral alkyloxyaminyl radicals by a multiple function have been published up to date for the preparation of fused pyrrolidine derivatives. We describe here a fused pyrrolidine derivative, (I), prepared for the first time via an alkyl-oxyaminyl radical, which has been generated through the reductive intermolecular or intramolecular addition of carbon radicals to the carbon atom of oxime ethers (Friestad, 2001; Naito et al., 2000; Tauh \& Fallis, 1999; Marco-Contelles et al., 1996; Enholm et al., 1990). We carried out this reaction from methyl 2-[(E)-1-(benzyl-oxyimino)ethyl]-5-bromo-2-cinnamylpent-4-enoate by a double bond in a cascade process yielding the title compound, (I). This reaction involves two sequential 5 -exo ring closures involving vinyl and neutral alkyl-oxyaminyl radicals, in a chain radical reaction, in which the attack of the radical is stereocontrolled by the carboxymethyl group, and hence determining the stereochemistry of the new bonds on the opposite face to that group.

The title molecule, (I), is shown in Fig. 1. There are no unusual bonds lengths or angles in the structure. The puckering of the two five-membered rings $\mathrm{N} 1 / \mathrm{C} 2 / \mathrm{C} 3 / \mathrm{C} 3 A / \mathrm{C} 6 A$ and C3A/C4/C5/C6/C6A as defined by the pseudorotation parameters P and $\tau(M)$ (Rao et al., 1981), are, for the former, $P=$ $182.4(1)^{\circ}, \tau(M)=48.6(1)^{\circ}$, reference bond $\mathrm{N} 1-\mathrm{C} 2$, corresponding to a twist on $\mathrm{N} 1-\mathrm{C} 2$ and, for the latter, $P=$ $340.4(6)^{\circ}, \tau(M)=12.2(1)^{\circ}$, reference bond C $3 A-\mathrm{C} 4$, corresponding to an envelope on C3 A.

Figure 1
A view of (I), showing displacement ellipsoids drawn at the 30% probability level.

Figure 2
A view of the C 6 chain formed by the $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (dashed lines). The atoms labelled with and asterisk $(*)$ and hash (\#) are related by the symmetry operators $\left(\frac{1}{2}+x, \frac{1}{2}-y, 1-z\right)$ and $\left(-\frac{1}{2}+x, \frac{1}{2}-y, 1-z\right)$, respectively.

Figure 3
A view of the $C(7)$ chain formed by the $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (dashed lines). The atoms labelled asterisk (*) and hash (\#) are related by the symmetry operators $\left(-\frac{1}{2}+x, y, \frac{3}{2}-z\right)$ and $\left(\frac{1}{2}+x, y, \frac{3}{2}-z\right)$, respectively.

Figure 4
A stereoview of the (010) sheet showing the $C 6$ and $C 8$ chains and the $R_{4}^{4}(24)$ rings. Hydrogen bonds are shown as dashed lines

Two $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds are involved in the supramolecular stucture (Table 1). $\mathrm{C} 5-\mathrm{H} 5 \cdots \mathrm{O} 1\left(\frac{1}{2}+x, \frac{1}{2}-y, 1-z\right)$ forms a $C(6)$ chain (Fig. 2) (Bernstein et al., 1995) and C27$\mathrm{H} 27 B \cdots \mathrm{O} 32 A$ forms a $C(7)$ chain (Fig. 3), both of which run parallel to the a axis. The latter hydrogen bond links antiparallel C6 chains of the former type into a sheet consisting of a network of $R_{4}^{4}(24)$ rings which lies parallel to (010) (Fig. 4). Atom C 5 is a hydrogen donor to O 1 in the molecule at $\left(\frac{1}{2}+x, \frac{1}{2}\right.$ $-y, 1-z$), atom C2a in this molecule is a hydrogen donor to O 1 in the molecule at $\left(x, \frac{1}{2}-y,-\frac{1}{2}-z\right), \mathrm{C} 27$ in this molecule is a hydrogen donor to $\mathrm{O} 32 A$ in the molecule at $\left(-\frac{1}{2}+x, \frac{1}{2}-y\right.$, $1-z$), while C 5 is a hydrogen donor to $\mathrm{O} 32 A$ in the molecule at (x, y, z). Two such sheets occur in the unit cell; one in the range $0.0>y>0.5$ and $0.5>y>1.0$. There are no interactions between adjacent sheets, $\mathrm{C}-\mathrm{H} \cdots \pi$ or $\pi-\pi$ interactions being absent.

Experimental

A solution of methyl 2-[(E)-1-(benzyloxyimino)ethyl]-5-bromo-2-cinnamylpent-4-enoate ($350 \mathrm{mg}, 0.77 \mathrm{mmol}$), $2,2^{\prime}$-azobisisobutyronitrile $(39 \mathrm{mg}, \quad 0.23 \mathrm{mmol})$ and tributyltin hydride $(0.26 \mathrm{ml}$, 0.92 mmol) in cyclohexane (39 ml) was degassed for 1 h by bubbling dry argon, and subsequently stirred at 353 K for $6-8 \mathrm{~h}$. After cooling to room temperature the solution was evaporated under low pressure to dryness. Purification of the crude mixture by flash column chromatography with $5 \%(v / v)$ AcOEt/hexanes yielded a white solid ($63 \mathrm{mg}, 22 \%$ yield) mp 355 K . HRMS (EI) calcd for $\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{NO}_{3}$ 377.19909, found 377.19907. The solid was recrystallized from ethanol producing white crystals suitable for X-ray analysis.

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{24} \mathrm{H}_{27} \mathrm{NO}_{3} \\
& M_{r}=377.47 \\
& \text { Orthorhombic, } P b c a \\
& a=8.8410(17) \AA \\
& b=20.584(4) \AA \\
& c=22.344(2) \AA \\
& V=4066.2(12) \AA^{3} \\
& Z=8 \\
& D_{x}=1.233 \mathrm{Mg} \mathrm{~m}^{-3}
\end{aligned}
$$

Mo $K \alpha$ radiation
Cell parameters from 4921reflections
$\theta=6.4-28.5^{\circ}$
$\mu=0.08 \mathrm{~mm}^{-1}$
$T=120$ (2) K
Plate, colourless
$0.38 \times 0.33 \times 0.12 \mathrm{~mm}$

Data collection
Bruker-Nonius KappaCCD
\quad diffractometer
$\varphi-\omega$ scans
Absorption correction: multi-scan
[SADABS (Sheldrick, 2003) and
$E V A L C C D$ (Duisenberg et al.,
2003) $]$
$T_{\min }=0.970, T_{\max }=0.990$

48795 measured reflections 4921 independent reflections 3477 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.041$ $\theta_{\text {max }}=28.5^{\circ}$ $h=-11 \rightarrow 11$ $k=-26 \rightarrow 26$ $l=-29 \rightarrow 27$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.055$
$w R\left(F^{2}\right)=0.109$
$S=1.11$
4921 reflections
255 parameters
H-atom parameters constrained

Table 1
Hydrogen-bond geometry $\left(\AA^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
C5-H5 $\cdots \mathrm{O}^{\mathrm{i}}$	0.95	2.51	$3.444(2)$	169
${\text { C27-H27B } \cdots{ }^{\mathrm{i}} \mathrm{O}^{\text {ii }}}$	0.99	2.59	$3.548(2)$	163

Symmetry codes: (i) $x+\frac{1}{2},-y+\frac{1}{2},-z+1$; (ii) $x-\frac{1}{2}, y,-z+\frac{3}{2}$.
H atoms were treated as riding atoms, with aromatic $\mathrm{C}-\mathrm{H}=$ $0.95 \AA, \mathrm{CH}_{2} \mathrm{C}-\mathrm{H}=0.99 \AA$, both with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$, and methyl C-H $=0.98 \AA$, with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$.

Data collection: COLLECT (Hooft, 2004); cell refinement: DIRAX/LSQ (Duisenberg et al., 2000); data reduction: EVALCCD (Duisenberg et al., 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: OSCAIL (McArdle, 2003 and SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare
material for publication: SHELXL97 and WORDPERFECT macro PRPKAPPA (Ferguson, 1999).

X-ray data were collected at the Servicios Técnicos de Investigación, Universidad de Jaén. JC and MN thank the Consejería de Educación y Ciencia (Junta de Andalucía, Spain) and the Universidad de Jaén for financial support. LMJ and AEL thank COLCIENCIAS and Universidad del Valle for financial support of this work.

References

Bernstein, J., Davis, R., Shimoni, L. \& Chang, N.-L. (1995). Angew. Chem. Int. Engl. 34, 1555-1573.
Bowman, W. R., Stephenson, P. T. \& Young, A. R. (1996). Tetrahedron, 52, 11445-11462.
Duisenberg, A, J., Hooft, R. W. W., Schreurs, A. M. M. \& Kroon, J. (2000). J. Appl. Cryst. 33, 893-898.
Duisenberg, A, J., Kroon-Batenburg, L. M. J. \& Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220-229.
Enholm, E., Jaramillo, L. M., Burroff, J. (1990). Tetrahedron Lett. 31, 37273730.

Esker, J. L. \& Newcomb, M. (1993). Adv. Heterocycl. Chem. 58, 1-45.
Fallis, A. G. \& Brinza, I. M. (1997). Tetrahedron, 53, 17543-17594.
Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.
Friestad, G. K. (2001). Tetrahedron, 57, 5461-5496.
Guindon, I., Guérin, B. \& Landry, S. R. (2001). Org. Lett. 3, 2293-2296.
Hooft, R. W. W. (2004). COLLECT. Bruker-Nonius, Delft, The Netherlands. Marco-Contelles, J., Destabel, C., Gallego, P., Chiara, J. L. \& Bernabe, M. (1996). J. Org. Chem. 61, 1354-1362.

McArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.
Naito, T., Miyabe, H., Ueda, M., Yoshioka, N. \& Yamakawa, K. (2000). Tetrahedron, 56, 2413-2420.
Rao, S. T., Westhof, E. \& Sundaralingam, M. (1981). Acta Cryst. A37, 421-425. Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sheldrick, G. M. (2003) SADABS. Bruker-Nonius, Delft, The Netherlands. Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Tauh, T. \& Fallis, A. G. (1999). J. Org. Chem. 64, 6960-6968.

[^0]: (C) 2006 International Union of Crystallography

